报告人:孙浩军 教授

报告时间:2016年7月19日 15:00

报告地点:计算机与通信工程学院会议室(基础楼217)

邀 请 人:王翠荣、刘杰民 教授

报告人简介:孙浩军,博士,教授, 1982年毕业于河北大学数学系, 1982-2000年在河北大学任教,2000-2005年在加拿大舍布克大学留学,并于2005年获博士学位。同年回国工作,现任汕头大学工学院计算机系教授。其研究涉及了多个科学领域,其中包括模式识别、数据挖掘、图像处理和理解、信息系统、神经网络、信号处理等。近年来主持国家自然基金、省基金以及横向课题的研究,在国际国内期刊、国际会议发表论文多篇。目前兼任中国计算机学会信息系统专委会委员,中国人工智能学会机器学习专业委员会通讯委员。

报告内容摘要:Clustering high-dimensional data is a challenging task in data mining, and clustering high-dimensional categorical data is even more challenging because it is more difficult to measure the similarity between categorical objects. We propose a hierarchical algorithm with attribute weighting for clustering high-dimensional categorical data, based on a recently proposed information-theoretical concept named holo-entropy. The algorithm proposes new ways of exploring entropy, holo-entropy and attribute weighting in order to determine the feature subspace of a cluster and to merge clusters even though their feature subspaces differ.High-dimensional mixture data clustering is a new issue of data mining in rescent years. Focused on the problem, this reseach study the information amalgamation of mixture data. We proposed a data discretization method based on the fuzzy-set which preserves the sequence data after discretization of numerical data, and proposed a hierarchical clustering method based on the information entropy. 


上一条:我校学生在第五届河北省创新创业大赛中喜获佳绩